Теорема Пікара

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

У комплексному аналізі теоремами Пікара називаються дві теореми (мала і велика) про властивості цілих функцій і функцій голоморфних в околі істотної особливої точки.

Твердження

[ред. | ред. код]

Мала теорема Пікара

[ред. | ред. код]

Областю значень цілої функції, що не є рівною константі, є вся комплексна площина, за винятком, можливо, лише однієї точки.

Велика теорема Пікара

[ред. | ред. код]

Якщо — однозначна голоморфна функція в околі точки , яка є для неї суттєво особливою точкою, то в кожному околі точки функція приймає довільне скінченне значення, за винятком, можливо, одного.

Доведення

[ред. | ред. код]

Теореми Пікара мають кілька різних доведень. Нижче наведені доведення за допомогою так званої геометричної теорії голоморфних функцій, зокрема за допомогою теорем Ландау, Блоха і Шотткі.

Мала теорема Пікара

[ред. | ред. код]

Малу теорему Пікара можна довести за допомогою теореми Ландау. Припустимо, що ціла функція не має двох різних скінченних значень і і не є константою.

Розглянемо функцію . Вона є голоморфною у всій площині, не рівною і і не є константою. Отже існує точка, яку можна вважати початком координат, в якій похідна не є рівною нулю. Нехай розклад функції в степеневий ряд в околі нуля буде .

Оскільки функція є голоморфною і не рівною і всередині кола довільного радіуса : , то по теоремі Ландау маємо .

Суперечність цієї нерівності очевидна, оскільки в лівій її частині є довільне число , а в правій — деяка константа .

Велика теорема Пікара

[ред. | ред. код]

Нехай не є рівною двом скінченним значенням, за які можна взяти 0 і 1, як і у доведенні малої теореми. За допомогою дробово-лінійного перетворення незалежної змінної можна досягти того, що істотно особлива точка буде нескінченною, а функція буде голоморфною і не рівною нулю і одиниці при

На основі теореми Сохоцького — Вейєрштраса, можливо задати нескінченну послідовність точок що збігається до нескінченної точки і також для всіх n виконується нерівність

Для великих значень n функції є голоморфними в області і

Застосовуючи теорему Шотткі до кола з центром в точці радіуса 1/2, одержуємо, що ці функції в колі з центром радіуса 1/4 по модулю є між двома константами. Стартуючи від кола з центром радіуса 1/4, можливо побудувати послідовність із скінченної кількості кіл радіуса 1/4 з центрами на колі так, щоб центр кожного наступного круга лежав всередині попереднього круга, і так, щоб вони разом покривали коло

Послідовне багаторазове застосування узагальненої теореми Шотткі до кіл радіуса 1/2, із центрами в елементах послідовності, показує, що в області утвореній колами радіуса 1/4, всі функції за модулем є між двома постійними числами. Зокрема ці функції на колі є обмеженими по модулю. Це твердження є рівнозначним тому, що функція на всіх колах за модулем є меншою деякої константи. Оскільки функція, що є голоморфною в кільці, включно із його границею, досягає максимуму свого модуля на границі, то в області є меншим, ніж ця константа. Одержується протиріччя з теоремою Сохоцького — Вейєрштраса, що і доводить справедливість великої теореми Пікара.

Див. також

[ред. | ред. код]

Література

[ред. | ред. код]
  • Бронштейн И. Н., Семендяев К. А. Справочник по математике для инженеров и учащихся втузов. — М.: Наука, 1980. — 976 с., ил.
  • Привалов И. И. Введение в теорию функций комплексного переменного. — 12-е. — Москва : Наука, 1977.